Model Systems of Invertebrate Allorecognition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Systems of Invertebrate Allorecognition

Nearly all colonial marine invertebrates are capable of allorecognition--the ability to distinguish between self and genetically distinct members of the same species. When two or more colonies grow into contact, they either reject each other and compete for the contested space or fuse and form a single, chimeric colony. The specificity of this response is conferred by genetic systems that restr...

متن کامل

Invertebrate Allorecognition: The Origins of Histocompatibility

Alloimmune specificity and histocompatibility, driven by genetic polymorphism, are ancient determinants of self-/non-self-recognition. Recent molecular genetic evidence has revealed an allodeterminant in the cnidarian Hydractinia that consistently predicts histocompatibility reactions.

متن کامل

Allorecognition Proteins in an Invertebrate Exhibit Homophilic Interactions

Sessile colonial invertebrates-animals such as sponges, corals, bryozoans, and ascidians-can distinguish between their own tissues and those of conspecifics upon contact [1]. This ability, called allorecognition, mediates spatial competition and can prevent stem cell parasitism by ensuring that colonies only fuse with self or close kin. In every taxon studied to date, allorecognition is control...

متن کامل

Peptide Neuromodulation in Invertebrate Model Systems

Neuropeptides modulate neural circuits controlling adaptive animal behaviors and physiological processes, such as feeding/metabolism, reproductive behaviors, circadian rhythms, central pattern generation, and sensorimotor integration. Invertebrate model systems have enabled detailed experimental analysis using combined genetic, behavioral, and physiological approaches. Here we review selected e...

متن کامل

Dendritic Remodeling: Lessons from Invertebrate Model Systems.

Dendrites are the entry site of neural signals into neurons. Once formed, dendrites are not just the same in structure but rather are dynamically remodeled in vivo: some dendrites are pruned away, while others lengthen and branch out. Dendritic remodeling occurs not only during neural development, but also in mature dendrites under both physiological and pathological conditions, suggesting its ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Current Biology

سال: 2011

ISSN: 0960-9822

DOI: 10.1016/j.cub.2010.11.061